Genetic analysis of a synaptic calcium channel in Drosophila: intragenic modifiers of a temperature-sensitive paralytic mutant of cacophony.

نویسندگان

  • I M Brooks
  • R Felling
  • F Kawasaki
  • R W Ordway
چکیده

Our previous genetic analysis of synaptic mechanisms in Drosophila identified a temperature-sensitive paralytic mutant of the voltage-gated calcium channel alpha1 subunit gene, cacophony (cac). Electrophysiological studies in this mutant, designated cac(TS2), indicated cac encodes a primary calcium channel alpha1 subunit functioning in neurotransmitter release. To further examine the functions and interactions of cac-encoded calcium channels, a genetic screen was performed to isolate new mutations that modify the cac(TS2) paralytic phenotype. The screen recovered 10 mutations that enhance or suppress cac(TS2), including second-site mutations in cac (intragenic modifiers) as well as mutations mapping to other genes (extragenic modifiers). Here we report molecular characterization of three intragenic modifiers and examine the consequences of these mutations for temperature-sensitive behavior, synaptic function, and processing of cac pre-mRNAs. These mutations may further define the structural basis of calcium channel alpha1 subunit function in neurotransmitter release.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic modifiers of the Drosophila NSF mutant, comatose, include a temperature-sensitive paralytic allele of the calcium channel alpha1-subunit gene, cacophony.

The N-ethylmaleimide-sensitive fusion protein (NSF) has been implicated in vesicle trafficking in perhaps all eukaryotic cells. The Drosophila comatose (comt) gene encodes an NSF homolog, dNSF1. Our previous work with temperature-sensitive (TS) paralytic alleles of comt has revealed a function for dNSF1 at synapses, where it appears to prime synaptic vesicles for neurotransmitter release. To fu...

متن کامل

A temperature-sensitive paralytic mutant defines a primary synaptic calcium channel in Drosophila.

Neurotransmission at chemical synapses involves regulated exocytosis of neurotransmitter from the presynaptic terminal. Neurotransmitter release is thought to be triggered by calcium influx through specific classes of voltage-gated calcium channels. Here we report genetic and functional analysis implicating a specific calcium channel gene product in neurotransmitter release. We have isolated a ...

متن کامل

Synaptic calcium-channel function in Drosophila: analysis and transformation rescue of temperature-sensitive paralytic and lethal mutations of cacophony.

Voltage-gated calcium channels play a key role in chemical synaptic transmission by providing the calcium trigger for regulated neurotransmitter release. Genes encoding the primary structural subunit, alpha1, as well as accessory subunits of presynaptic calcium channels have now been identified in a variety of organisms. The cacophony (cac) gene in Drosophila, also known as nightblind A, encode...

متن کامل

Properties of short-term synaptic depression at larval neuromuscular synapses in wild-type and temperature-sensitive paralytic mutants of Drosophila.

The larval neuromuscular synapse of Drosophila serves as an important model for genetic and molecular analysis of synaptic development and function. Further functional characterization of this synapse, as well as adult neuromuscular synapses, will greatly enhance the impact of this model system on our understanding of synaptic transmission. Here we describe a form of short-term synaptic depress...

متن کامل

Courtship and other behaviors affected by a heat-sensitive, molecularly novel mutation in the cacophony calcium-channel gene of Drosophila.

The cacophony (cac) locus of Drosophila melanogaster, which encodes a calcium-channel subunit, has been mutated to cause courtship-song defects or abnormal responses to visual stimuli. However, the most recently isolated cac mutant was identified as an enhancer of a comatose mutation's effects on general locomotion. We analyzed the cac(TS2) mutation in terms of its intragenic molecular change a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genetics

دوره 164 1  شماره 

صفحات  -

تاریخ انتشار 2003